

A Yokogawa Company

Digital Twin supports optimization of FCC operations for changing operating conditions

Rodolfo Tellez-Schmill, KBC Advanced Technologies

Petro-SIM Product Champion

Tom Ralston, MySep Pte Ltd.

Digital Process Engineering Business Development

Wim Moyson, MySep Pte Ltd.

Consultant Separation Specialist

Q&A	Send all questions during the webinar via the Q&A box.	
Polls	Take part in our on screen polls.	l
Download presentation	A copy of this presentation can be downloaded using the 'green' Resource List button.	↓

Your presenters

A Yokogawa Company

Tom Ralston

Digital Process Engineering Business Development

Rodolfo Tellez-Schmill

Petro-SIM Product Champion

Wim Moyson

Consultant

- Introduction to MySep Pte Ltd
- Petro-SIM and Digital Twins
- MySep Engine in Petro-SIM
- Typical workflow
- FCC reactor in Petro-SIM
- Case Study: FCC unit separators Retrofit Design
- Conclusion

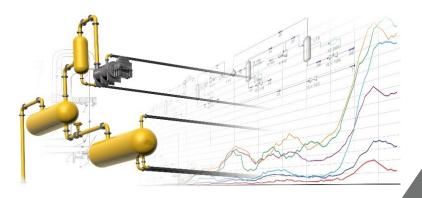


MySep Pte Ltd

A Yokogawa Company

- Founded in 2013 by separation specialist consultancy Kranji Solutions.
- Providing process operators and EPCs means of optimising operations
 - where phase separation is crucial
- Providing The Standard Software
 - For separation performance modelling and
 - Separator design or revamp

MySep Pte Ltd


A Yokogawa Company

MySep Studio

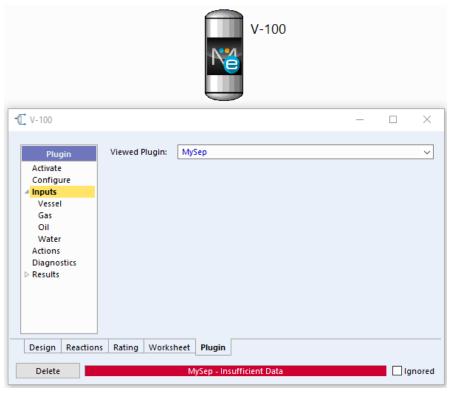
- Detailed representation of existing separators.
- Design of new separators or retrofit option evaluation.
- Incremental performance analysis:
 - Gas-liquid
 - Liquid-liquid
- Special analyses sensitivity, operating envelope, motion.

MySep Engine

- Digital-twin in Petro-SIM with rigorous separation.
- Based on as-built geometry & internals selection.
- Gas-liquid separation.
- Dynamic and Steady-state.

Petro-SIM and Digital Twins

- Petro-SIM is KBC's leading process simulation software and optimization platform.
- At the core of Petro-SIM's technology are rigorous process simulation models.
- Petro-SIM's open architecture collects real-time operations data from the site historian.
- Petro-SIM also delivers high-fidelity virtual representations of plant operating conditions.
- The Digital Twin provides a single source of the truth for what's going on inside the plant at an asset level.



MYSEP

MySep Engine integration in Petro-SIM

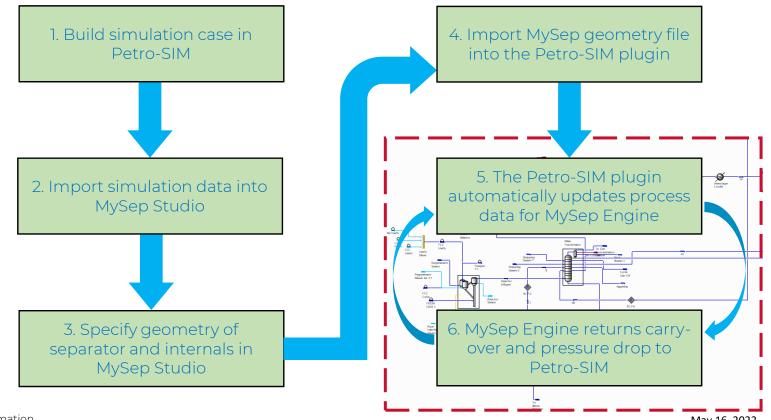
- KBC and MySep formed a collaboration to offer a solution that helps operators manage processes subject to separation constraints.
- The Digital Twin evaluates process system performance based on actual operating data.
- Explore separation performance constraints on overall process operation.
- Evaluate optimum retrofit configurations.

MYSEP

MySep Engine integration in Petro-SIM

- The MySep Engine provides calculations with detailed separator performance results:
 - Liquid carry-over rate
 - Maximum droplet size
 - Pressure drop
- Results are displayed directly in the process simulation.
- The effect of the liquid carry-over propagates across the flowsheet.

	MySep	•
Vessel d100 [micr	on]	7.0
Vessel Carryover F	low [m3/h]	2.375e-
Vessel Carryover F	Ratio [vol %]	0.00
Vessel Efficiency	[%]	1
Light Liquid Carry	Over [m3/h]	2.364e-
Heavy Liquid Carry	y Over [m3/h]	1.065e-
		2.364e-
		1.065e-
Vessel Pressure D	rop [kPa]	2.7-
,		
	Vessel Carryover F Vessel Carryover F Vessel Efficiency Light Liquid Carry Heavy Liquid Carry Vessel Oil Carry O Vessel Water Carr	Vessel Group (micron) Vessel Carryover Ratio [vol %] Vessel Carryover Ratio [vol %] Vessel Efficiency [%] Light Liquid Carry Over [m3/h] Heavy Liquid Carry Over [m3/h] Vessel Oil Carry Over [m3/h] Vessel Water Carry Over [m3/h] Vessel Pressure Drop [kPa]



MYSEP

Typical Workflow

Proprietary Information

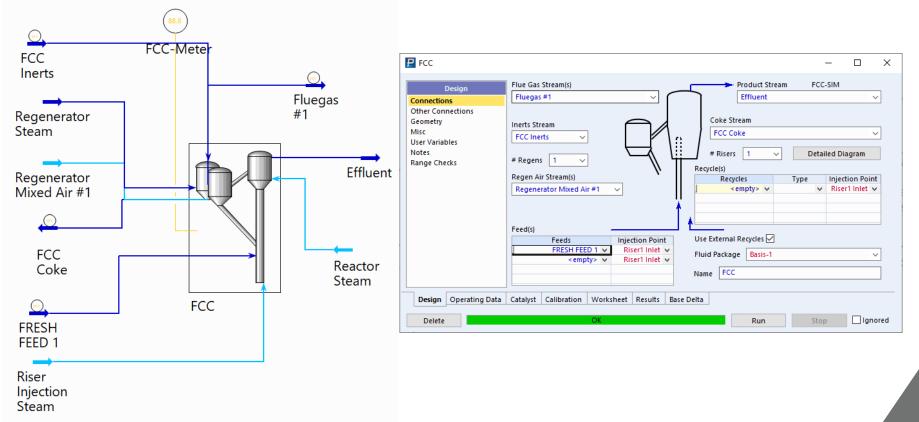
May 16, 2022

Typical Workflow Illustrated

-	
A Yokogawa	Company

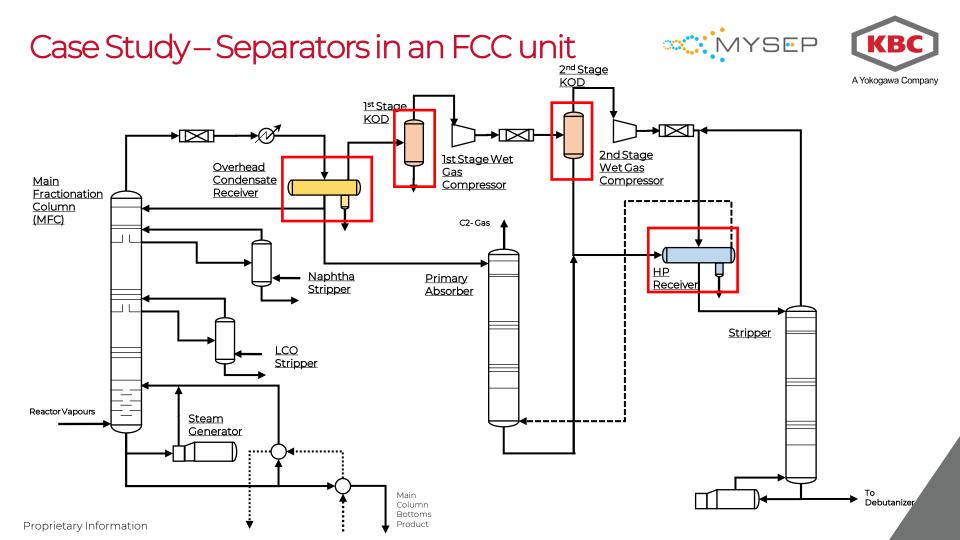
	MySep - Process data input - V-1003	- 🗆 X	– 🗆 X
	Data input	· ·	
0		Vessel & nozzles Liquid levels Liquid section Inlet & Gas section Agglomerator Demisting device #1 Vessel layout	
Ŭ	Number of cases 1 Import	Horizontal vessel layout V-1003 - V X	
	Operating conditions	Inlet nozzle location	
	Operating pressure barg 0.9868	Inlet nozzle C/L Design	
41	Operating temperature °C 🗨 40	Gas outlet nozzle location Connections Delta P	
	Gas	Gas outlet nozele C/L User Variables 2.748 kPa Volume Volume	
	Gas flow rate kg/hr 💌 541.1	HC liquid outlet nozzle C/L Notes	
	Gas molecular weight kg/kmol 🗸 52.511	Boot C/L	
	Gas density kg/m³ 💌 4.202		
	Compressibility factor 0.9598		o lengths Copy drawing
	Gas viscosity CP 0.008217	Type Liquid Level 50.0 %	
	Use gas law for density?	O Separator ● 3 Phase Sep	
	Hydrocarbon liquid	O Tank	
	HC liquid flow rate kg/hr 💌 81739	Design Reactions Rating Worksheet Plugin	
	HC liquid density kg/m³ 💌 644.98		
	HC liquid viscosity CP O.2312	Delete OK Ignored	
	HC liquid surface tension dyne/cm 💌 15.077		
	Water		
	Water flow rate kg/hr 💌 568.41		
	Water density kg/m³ 💌 995.99		
	Water viscosity CP O 0.6514		
	Water surface tension dyne/cm 💌 69.493	\bigcup	

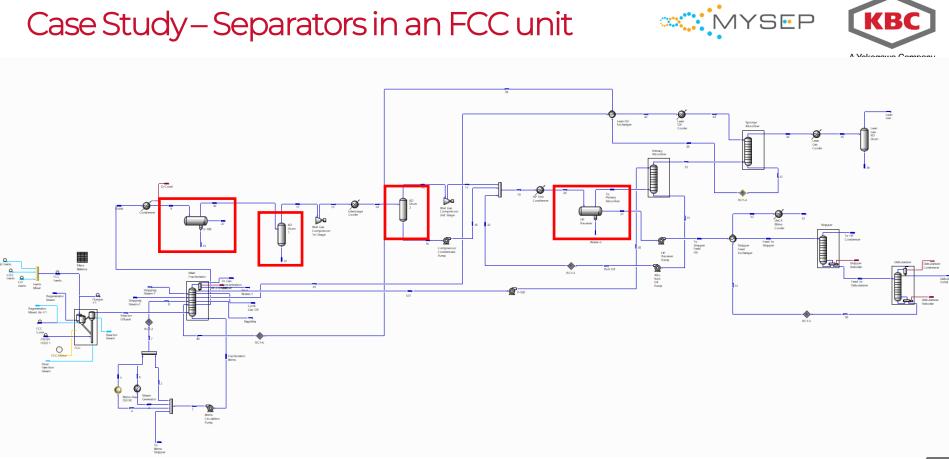
FCC reactor model in Petro-SIM



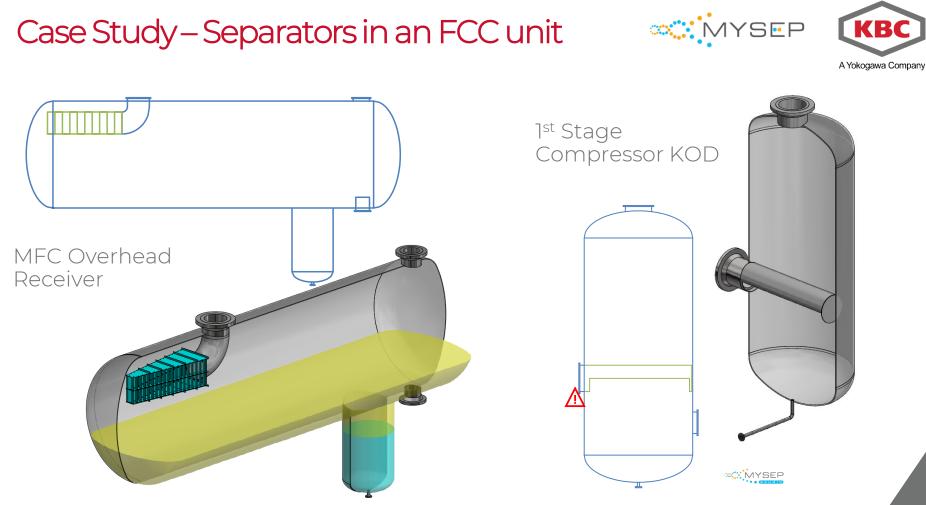
- Petro-SIM is the ideal simulation environment to build simulations that involve complex refining operations, like FCC Units.
- Our FCC reactor (FCC-SIM) is a state-of-the-art computer model, highly recommended by major refiners around the world.
- FCC-SIM allows the following:
 - Feeds/products/cutpoints evaluations
 - Operating target selection
 - Catalyst evaluation, selection and benefits
 - Unit optimization
 - Debottlenecking evaluation and benefits
 - Process monitoring
 - Data reconciliation
 - Etc.

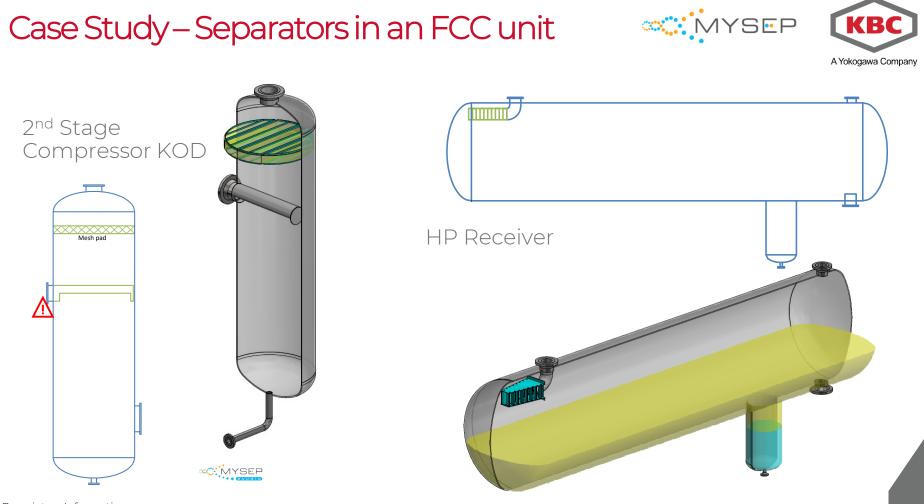
FCC reactor model in Petro-SIM





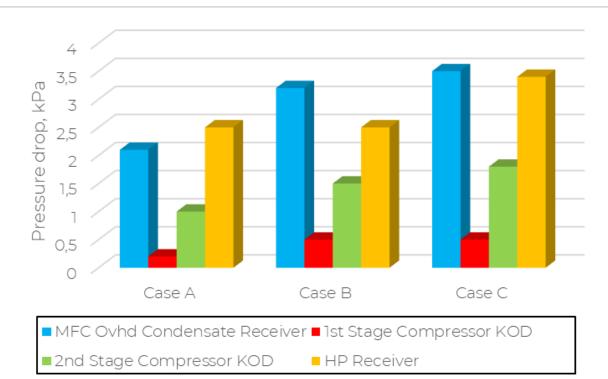
- Assuming a weakening market for naphtha and a strengthening demand for petrochemical feedstock.
- Planned targets consequently yield more propane and light products.
- The following operational changes were explored:
 - Case A an increase of the throughput by 15%
 - Case B increase the ZSM-5 catalyst addition to existing inventory and
 - Case C increase the riser outlet temperature to 540°C (1004°F) to increase conversion


KBC

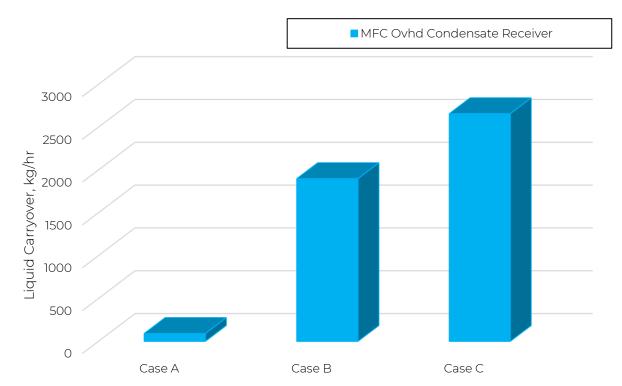


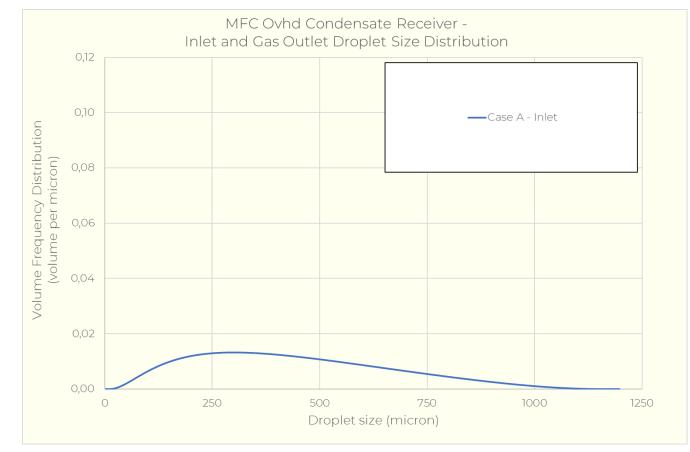
A Yokogawa Company

Separator	Configuration	Nozzles	Internals
MF Condensate Receiver	Separation type: 3-phase with boot Vessel dimensions: 3962 mm x 11888 mm Boot dimensions: 1524 mm x 2362 mm	Inlet: 32" Gas Outlet: 24" HC Liquid Outlet: 20" Water Outlet: 3"	Vane type inlet device No demisting device
1 st Stage Compressor KOD	Separation type: 2-phase Vessel dimensions: 2515 mm x 5029 mm	Inlet: 24" Gas Outlet: 24" Liquid Outlet: 2"	Half pipe inlet device No demisting device
2 nd Stage Compressor KOD	Separation type: 2-phase Vessel dimensions: 1575 mm x 4750 mm	Inlet: 12" Gas Outlet: 12" Liquid Outlet: 4"	Half pipe inlet device Mesh pad demisting device
HP Receiver	Separation type: 3-phase with boot Vessel dimensions: 2210 mm x 8840 mm Boot dimensions: 686 mm x 1219 mm	Inlet: 10" Gas Outlet: 8" HC Liquid Outlet: 10" Water Outlet: 2"	Vane type inlet device No demisting device

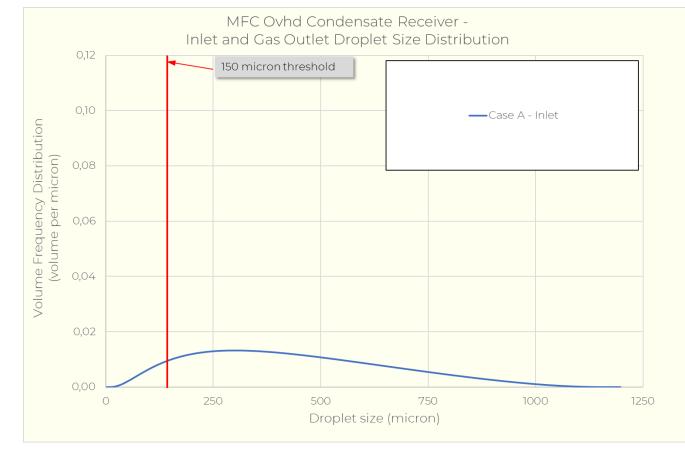


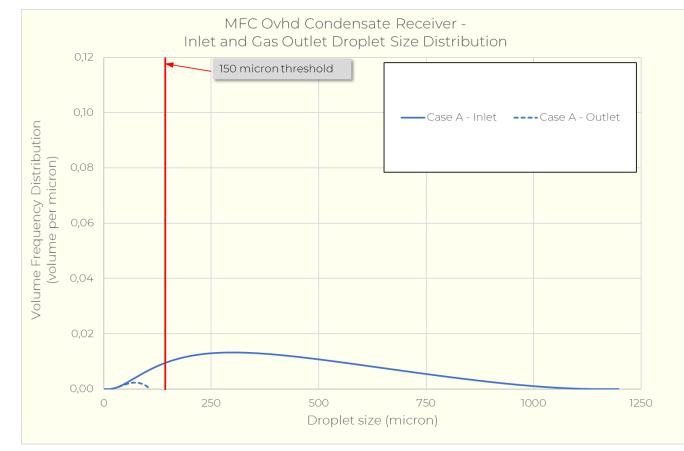
A Yokogawa Company

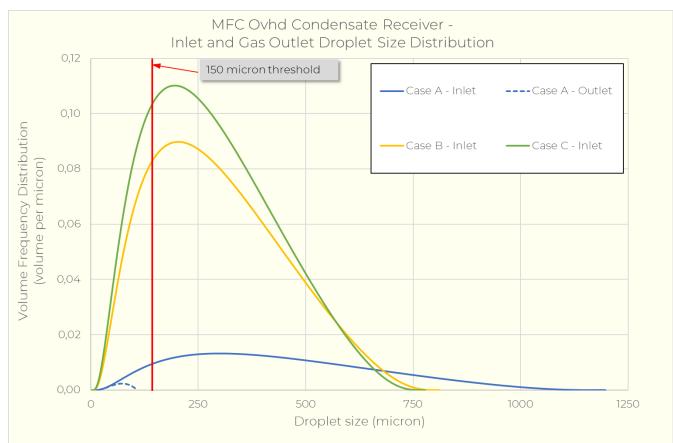


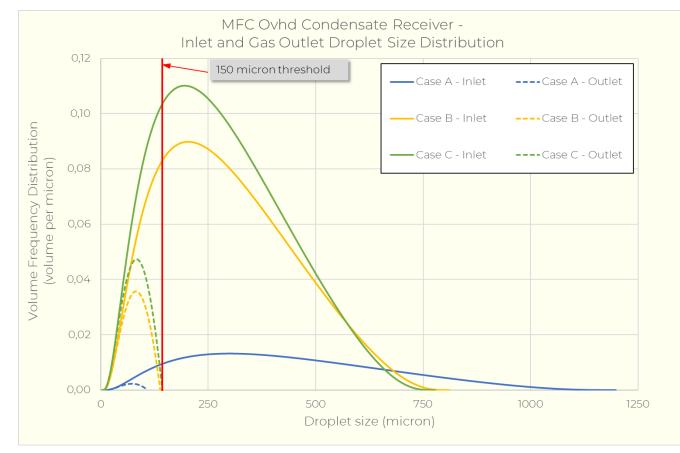


• Simulation results using original separator designs.

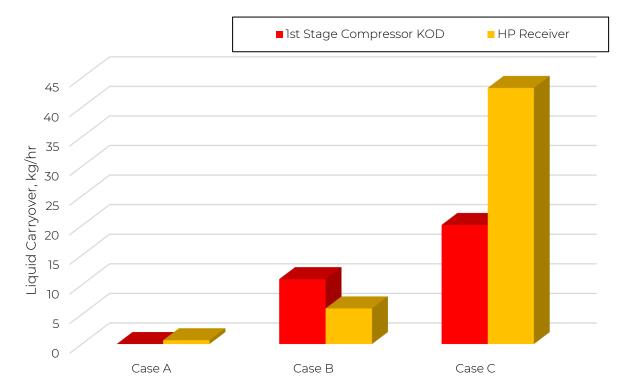


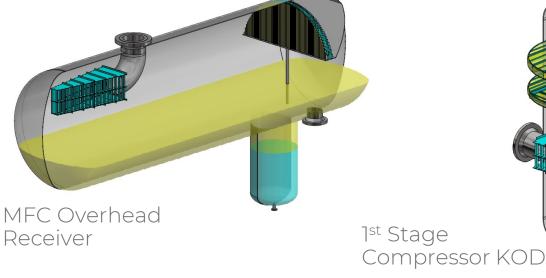




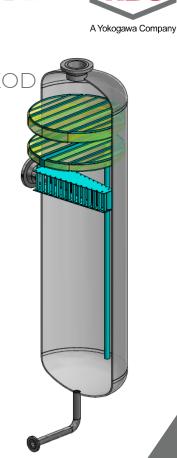

KBC

A Yokogawa Company

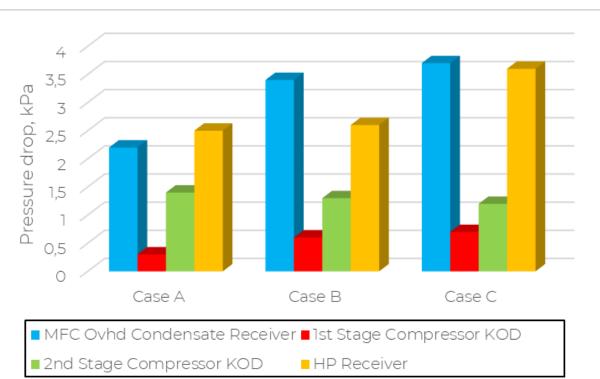




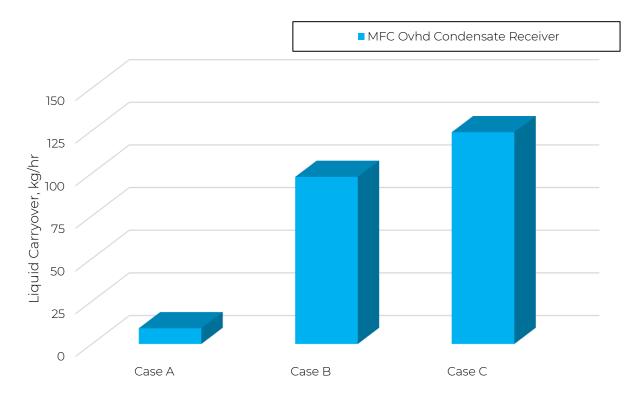



• Simulation results using original separator designs.

Separator	Internals
MF Condensate	Vane type for inlet device and a vane pack vertical demisting
Receiver	device
1 st Stage Compressor	Vane type inlet device a horizontal mesh agglomerator and a
KOD	mesh pad demisting device
2 nd Stage Compressor	Vane type inlet device, a horizontal mesh agglomerator and a
KOD	mesh pad demisting device



2nd Stage Compressor KO



• Simulation results using retrofitted designs.

KBC

A Yokogawa Company

KBC

A Yokogawa Company

Conclusion

- Digital Twins, based on process simulation models have become a prerequisite for optimizing operations and achieving production targets.
- Where phase separation processes are crucial to asset operation, it is essential the digital twin accesses rigorous separation modelling.
- From sand face, to topside facilities, and downstream processing, Petro-SIM digital twins, enhanced with MySep modelling, reveal opportunity for improved operation within physical constraints.

Send your questions via the Q&A box.

DownloadA copy of this presentation can be downloadedpresentationusing the green Resource List button.

Survey

Take our short survey to give us your feedback on today's webinar.

